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alopecia), and polycystic ovaries on ultrasonography dif-
ferentiate it. Obesity, insulin resistance, and infertility are 
typical additional features [1]. Although the exact cause 
of this syndrome is still largely unknown, accumulating 
evidence indicates that PCOS could be a multifacto-
rial disorder influenced significantly by epigenetic and 
environmental factors, such as lifestyle choices and diet 
[3–6]. PCOS poses significant challenges in diagnosis 
and management, impacting the overall health and fertil-
ity of affected individuals [7, 8]. The interplay of genetic, 
hormonal, and environmental factors complicates our 
understanding of PCOS [9].

Biomarker usage in PCOS is advancing rapidly [10]. 
While PCOS is a well-recognized and prevalent condi-
tion, searching for reliable biomarkers remains a priority 
for enhancing early detection and targeted management 
[11]. Due to its intimate involvement in reproductive 

Introduction
Polycystic ovary syndrome (PCOS) is a prevalent endo-
crine disorder among women of reproductive age, 
characterised by its complexity, familial nature, and 
polygenetic metabolic condition. It affects 5 to 15% of 
the population, with the prevalence dependent on the 
diagnostic criteria utilised [1, 2]. Irregular menstrual 
cycles, hyperandrogenism (including hirsutism, acne, and 
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Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age, 
characterised by its multifactorial nature and intricate interplay of genetic, hormonal, and environmental factors. As 
the search for reliable biomarkers intensifies, serum kisspeptin emerges as a promising candidate due to its central 
role in regulating the hypothalamic-pituitary-gonadal (HPG) axis. This review aims to consolidate the evolving 
understanding of kisspeptin as a potential PCOS biomarker, comprehensively exploring its physiological basis, 
diagnostic challenges in PCOS, and clinical implications. Diagnostic challenges in PCOS are addressed, underscoring 
the limitations of current criteria and the need for objective and standardised biomarkers. Kisspeptin’s introduction 
as a potential biomarker brings forth both promises and challenges in terms of its diagnostic utility. The review 
recognises the importance of standardisation in research methodologies and emphasises the exploration of 
genetic polymorphisms to enhance kisspeptin’s robustness as a diagnostic tool.
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physiology, Serum kisspeptin presents a compelling can-
didate for such a role [12]. Preliminary studies have sug-
gested alterations in serum kisspeptin levels in women 
with PCOS, sparking interest in its potential as a diag-
nostic biomarker [13, 14]. Within this dynamic land-
scape, kisspeptin, a neuropeptide with a crucial role in 
regulating the hypothalamic-pituitary-gonadal (HPG) 
axis, is emerging as a promising biomarker for PCOS 
[15]. Kisspeptin’s involvement in controlling gonadotro-
pin-releasing hormone (GnRH) secretion positions it as 
a pivotal factor in the reproductive dysfunction observed 
in PCOS [16].

Exploring the relationship between serum kisspeptin 
levels and PCOS can enhance understanding of the disor-
der and promise improved precision in diagnostics. Amid 
ongoing advancements, this review aims to consolidate 
the evolving knowledge of kisspeptin as a biomarker in 
PCOS, contributing to a broader understanding of this 
challenging condition.

Methodology
This review explored serum kisspeptin’s current status as 
a potential PCOS biomarker. It searched electronic data-
bases, including PubMed, Scopus, and Web of Science. 
The search strategy involved using relevant keywords, 
such as “kisspeptin,” “PCOS,” and “biomarker,” with Bool-
ean operators to refine and broaden the scope of the 
search. The review considered articles published up until 
December 2023 to encompass the most recent develop-
ments in the field.

Studies were included if they specifically explored the 
relationship between serum kisspeptin levels and PCOS. 
Exclusion criteria were applied to filter out studies not 
written in English, those exclusive to animal models, and 
those lacking clear relevance to the biomarker aspect 
of PCOS. Initial screening involved evaluating titles 
and abstracts to determine relevance. Subsequently, a 
detailed full-text screening was performed based on pre-
determined inclusion and exclusion criteria. This process 
ensured that studies that met the defined criteria for in-
depth analysis were selected.

Findings from the selected studies were synthesised to 
offer an overview of the existing evidence. This synthesis 
included an analysis of patterns, consistencies, and dis-
crepancies in the results, contributing to understanding 
the potential role of serum kisspeptin as a biomarker in 
PCOS.

Current diagnostic challenges in PCOS
PCOS presents a diagnostic challenge due to its diverse 
features, prompting the proposal of various diagnostic 
criteria since 1935, when Stein and Leventhal introduced 
the first criterion [17]. An optimal criterion balances 
specificity and sensitivity, which is crucial for identifying 

affected individuals and ruling out others [18]. PCOS, a 
common endocrine disorder affecting women of repro-
ductive age [19], requires a combination of clinical, bio-
chemical, and imaging criteria for an accurate diagnosis. 
The Rotterdam Criteria 2003 [20] demand at least 2 of 3 
criteria: anovulation/oligoovulation, clinical or biochemi-
cal evidence of hyperandrogenism, and polycystic ova-
ries on ultrasound. The Androgen Excess Society (AES) 
in 2006 prioritised hyperandrogenism but acknowledged 
the importance of ovarian morphology [21]. Current rec-
ommendations emphasise evaluating biochemical hyper-
androgenism through total free testosterone and clinical 
hyperandrogenism using the modified Ferriman-Gallwey 
score [18]. Diagnosis includes ovulatory dysfunction 
assessment, and polycystic ovarian morphology (PCOM) 
is defined as more than 20 follicles per ovary and/or an 
ovarian volume exceeding 10 cubic cm.

The complexity of PCOS, its heterogeneous clini-
cal presentation, and the need to rule out other endo-
crine pathologies contribute to diagnostic challenges 
[22]. PCOS, often diagnosed in adolescence, may not be 
recognised until infertility becomes apparent [23–27]. 
Overlapping syndromes with other diseases, like thyroid 
disorders, can lead to delayed diagnosis and misclas-
sification [28]. In addition, ethnicity and geographical 
variation contribute to the heterogeneity in PCOS pre-
sentations [29]. Clinical evidence suggests metabolic 
manifestations are more prevalent in America and Asia, 
while hyperandrogenism is more common in the Middle 
East and Europe [30]. Inconsistencies in diagnosis arise 
from the subjective nature of symptoms [31]. Diagnos-
tic limitations include the reliance on menstrual history, 
particularly in individuals using hormonal contracep-
tives, which mask irregularities [32]. Hirsutism’s subjec-
tive nature and varying prevalence among populations 
pose challenges [33]. Ovarian morphology criteria often 
lack specificity, as age, BMI, and ethnicity influence ultra-
sound findings [34].

Given these challenges, the quest for reliable biomark-
ers is essential for accurate and efficient PCOS diagnosis. 
The heterogeneous nature of PCOS necessitates bio-
markers offering an objective and standardised approach 
to categorising all phenotypes [35]. Such markers can 
enhance diagnostic accuracy, decrease misdiagnosis 
rates, and guide individualised treatments. Biomark-
ers’ role extends to monitoring treatment efficacy, aid-
ing early diagnosis, and intervening to prevent long-term 
complications. Reliable biomarkers can reduce variabil-
ity in PCOS diagnosis based on subjective symptoms, 
contributing to more consistent case identification. This 
objectivity becomes crucial in research and clinical trials, 
providing measurable outcomes and aiding in developing 
improved treatments. The ongoing studies on novel bio-
markers promise a future where these markers contribute 
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to precise PCOS classification, reducing ambiguity and 
advancing personalised approaches to diagnosis and 
management within precision medicine [36, 37].

Physiological basis of kisspeptin
The hypothalamic-pituitary-gonadal (HPG) axis is a cen-
tral component in reproduction [38]. Comprising the 
gonads, anterior hypothalamus, and pituitary, this system 
is pivotal in modulating animal and human reproductive 
processes [39]. Key aspects, such as spermatogenesis in 
males and the processes of follicular development, egg 
maturation, and ovulation in females, are significantly 
influenced by the HPG axis [40, 41].

The neuropeptide kisspeptin, first identified by Lee et 
al. [42], operates through the GPR54 G-protein-coupled 
receptor [43]. Originally linked to cancer metastasis, fur-
ther exploration has established its profound connection 
with reproduction [43]. By modulating GnRH secretion, 
kisspeptin emerges as a critical regulator within the HPG 
axis [44, 45]. Recent studies identify kisspeptin neurons 
in the arcuate nucleus (ARC), co-expressing dynorphin 
and neurokinin B (NKB), collectively known as KNDy 
neurons [46, 47]. These neurons are central to positive 
and negative oestrogen feedback mechanisms on GnRH 
secretion [46]. Through the HPG axis, kisspeptin gov-
erns female follicle development, oocyte maturation, 
and ovulation, contributing significantly to the initiation 
of puberty [45]. In male reproduction, kisspeptin regu-
lates spermatogenesis, Leydig cells, sperm functions, and 
reproductive behaviours [46].

The release of kisspeptin from the hypothalamus, influ-
enced by various regulatory factors, modulates GnRH 
secretion from GnRH neurons, effectively managing the 
reproductive axis [47]. Binding to its receptor, kisspeptin 
receptor (KISS1R), stimulates GnRH secretion, thus reg-
ulating the hypothalamic-pituitary-gonadal axis (HPG) 
[46]. Studies confirm that administering exogenous kis-
speptin induces a reproductive cascade in animals and 
humans [48, 49]. This effect is inhibited by a GnRH 
antagonist, reinforcing kisspeptin’s preeminent position 
along the HPG axis. Modern techniques, including opto-
genetics, demonstrate that the synchronous activation 
of ARC kisspeptin neurons induces pulsatile luteinising 
hormone (LH) release in rodents, dependent on sex ste-
roids [50, 51].

In PCOS, characterised by HPG axis distur-
bance, kisspeptin, encoded by the KISS1 gene, stim-
ulates gonadotropin secretion, releasing LH and 
follicle-stimulating hormone (FSH) [51]. Interactions 
with its receptors, KISS1R/GPR54, are essential for HPG 
axis regulation [50]. Polymorphisms or mutations in the 
KISS1 gene disrupt the HPG axis, influencing the kis-
speptin signalling pathway [52]. Such deviations lead to 
atypical GnRH pulse secretion, elevating the LH/FSH 

ratio, impacting androgen levels, and affecting ovula-
tion. Elevated androgen concentrations exacerbate PCOS 
symptoms [53].

Various single nucleotide polymorphisms (SNPs) in 
the KISS1 gene have been identified as disruptors of the 
reproductive system via the HPG axis, playing a cru-
cial role in PCOS pathogenesis [54]. These mutations 
can modify kisspeptin’s structure, function, and binding 
affinity to its receptor, GPR54/KISS1R [55]. As a result, 
polymorphism-induced anomalous gonadotropin-releas-
ing hormone (GnRH) secretion leads to increased LH 
and androgen synthesis (estradiol and testosterone) [53]. 
Tang et al. (2019) revealed elevated circulating kisspeptin 
levels among women with PCOS, supporting the hypoth-
esis that an overactive KISS1 system could contribute to 
syndrome development [54]. This heightened HPG-axis 
activity leads to irregular menstrual cycles and excessive 
androgen secretion [54].

Hypotheses suggest that elevated steroid hormones, 
influencing the GnRH and HPG axes via the kisspeptin-
GPR54 signalling pathway, may contribute to PCOS 
development [55]. Increased testosterone inhibits GnRH, 
leading to PCOS symptoms such as male pattern bald-
ness, hirsutism, and acne vulgaris [55, 56]. A continu-
ous increase in LH pulsatility lowers FSH levels, causing 
anovulation and follicle stimulation cessation, ultimately 
resulting in polycystic ovaries [57]. These findings sup-
port the notion that an overactive KISS1 system could 
contribute to PCOS development, characterised by irreg-
ular menstrual cycles, excessive androgen secretion, and 
an activated HPG-axis [53].

Kisspeptin as a potential biomarker for PCOS
Recent studies have explored the relationship between 
kisspeptin and PCOS. Akad et al. [37] conducted a 
prospective case study, revealing significantly higher 
kisspeptin levels in PCOS patients with primary or 
secondary infertility during the follicular phase of the 
menstrual cycle. This elevation suggests a potential link 
between KISS1 overstimulation, hyperstimulation of 
the HPG axis, irregular menstrual cycles, and increased 
testosterone secretion. However, findings regarding kis-
speptin levels in PCOS are varied. Some studies reported 
increased levels [58, 59], while others showed a negative 
correlation [60, 61]. Notably, kisspeptin’s involvement in 
regulating the HPG axis makes a positive correlation with 
LH plausible [62]. Ozlen et al. [63] found slightly elevated 
plasma kisspeptin levels in women with PCOS, positively 
correlated with LH and leptin levels.

Studies among diverse populations, such as the Sri 
Lankan study by Umayal et al. [64], reinforced the associ-
ation between higher kisspeptin levels and PCOS. Meixiu 
et al. [65] explored kisspeptin’s correlation with biochem-
ical markers in obese and non-obese women with PCOS, 
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suggesting its potential role in treatment, prognostica-
tion, and clinical evaluation. While serum kisspeptin’s 
sensitivity and specificity as a PCOS biomarker are not 
extensively explored, Yilmaz et al. [66] and Cihan et al. 
[67] provided cutoff values with promising specificity and 
sensitivity. However, more research is needed to under-
stand its diagnostic utility comprehensively.

Comparing kisspeptin with established biomarkers 
like anti-Mullerian hormone (AMH), sex hormone-
binding globulin (SHBG), CpG methylation biomarkers, 
and serum androgens can shed light on its diagnostic 
potential and interactions with other hormonal aspects 
of PCOS. Additionally, assessing kisspeptin levels in 
relation to chronic inflammatory markers may provide 
insight into the inflammatory aspect of PCOS and its 
potential cardiovascular and metabolic implications.

Clinical implications, diagnostic utility, and challenges
While this review provides evidence linking elevated 
kisspeptin expression to PCOS pathology, its status as a 
diagnostic biomarker remains unestablished. However, 
early detection of heightened kisspeptin levels could offer 
valuable clinical assumptions, potentially facilitating ear-
lier diagnosis and intervention. The complex and hetero-
geneous nature of PCOS symptoms, varying kisspeptin 
levels among phenotypic variants, and the association 
of kisspeptin with specific PCOS symptoms highlight its 
potential role in identifying at-risk individuals for further 
investigation and early diagnosis [67].

Moving beyond diagnosis, kisspeptin holds promise for 
influencing ovulation disorders and energy metabolism 
in PCOS patients. Current management strategies, albeit 
potent, are associated with severe complications such as 
ovarian hyperstimulation syndrome (OHSS) [67]. Stud-
ies exploring the stimulatory effects of kisspeptin on the 
HPG axis for endogenous gonadotrophin release present 
a potential avenue for novel therapies [68, 69]. Prelimi-
nary studies suggest its effectiveness in triggering oocyte 
maturation in females undergoing in vitro fertilisation 
(IVF) [39, 53].

Despite these promising advancements, kisspeptin 
remains underutilised both as a diagnostic tool and as a 
treatment modality for PCOS-induced fertility. Ongoing 
studies exploring the potential of kisspeptin antagonists 
and the development of rapid diagnostic tests present 
exciting prospects for improving PCOS management and 
diagnosis [70, 71]. Furthermore, the application of inno-
vative technologies like nanopeptamers and Inductively 
Coupled Plasma-Mass Spectrometry (ICP-MS) in point-
of-care testing underscores the evolving landscape of 
diagnostic modalities for kisspeptin [72, 73].

The challenges in kisspeptin research are acknowl-
edged, including variations in study types, designs, and 
demographic factors contributing to inconsistencies in 

findings. Standardisation of factors such as BMI cutoffs 
and detailed descriptions of sample collection proce-
dures are crucial for accurate and comparable data. The 
multifaceted nature of PCOS, influenced by genomic 
variations and environmental factors, adds complexity to 
interpreting kisspeptin levels, urging the need for further 
research into genetic polymorphisms of KISS1.

Conclusion
PCOS is a complex endocrine disorder affecting wom-
en’s reproductive years, involving genetic, hormonal, 
and environmental factors. The search for reliable bio-
markers is gaining momentum to enhance early detec-
tion and guide tailored interventions. Serum kisspeptin, 
a neuropeptide involved in regulating the HPG axis, is a 
promising candidate for a PCOS biomarker. The review 
highlights the need for objective and standardised 
approaches to address the diagnostic challenges in 
PCOS. Kisspeptin introduces a new dimension in PCOS 
diagnostics, promising more precise categorization and 
personalised treatments. However, the clinical implica-
tions, diagnostic utility, and challenges associated with 
kisspeptin present both the promises and hurdles in its 
journey towards becoming a reliable PCOS biomarker. 
The review acknowledges the need for standardisation in 
research methodologies and exploration of genetic poly-
morphisms to enhance the robustness of kisspeptin as a 
diagnostic tool.
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